International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\alpha u \quad \mbox{on ${\mathbb R}^N $, $\alpha>0$,} \] for $H^1$-subcritical or critical nonlinearities: $(N-2) \alpha \le 4$. Under the additional technical assumptions $\alpha\geq 2$ (and thus $N\leq 4$), we construct $H^1$ solutions that blow up in finite time with explicit blow-up profiles and blow-up rates. In particular, blowup can occur at any given finite set of points of ${\mathbb R}^N$. The construction involves explicit functions $U$, solutions of the ordinary differential equation $U_t=|U|^\alpha U$. In the simplest case, $U(t,x)=(|x|^k-\alpha t)^{-\frac 1\alpha}$ for $t<0$, $x\in {\mathbb R}^N$. For $k$ sufficiently large, $U$ ...
International audienceIn this paper, we consider a class of the focusing inhomogeneous nonlinear Sch...
International audienceWe consider a nonlinear Schrödinger equation with double power nonlinearity, w...
Ozsari, Turker/0000-0003-4240-5252WOS: 000446348800027The finite time blow-up of solutions for 1-D N...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$...
International audienceWe consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$...
We consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$, \begin{equation*} \p...
We consider the critical nonlinear Schr¿odinger equation iut = -.u-|u| 4 N u with initial condition ...
We consider the critical nonlinear Schrödinger equation iut = −∆u − |u | 4N u with initial condition...
AbstractIn this article we investigate the possibility of finite time blow-up in H1(R2) for solution...
We consider the following nonlinear Schr\"{o}dinger equation with double power nonlinearities and an...
International audienceWe consider the energy supercritical defocusing nonlinear Schrödinger equation...
摘要 本文我們探討一個非線性薛丁格方程式組。透過Madelung 轉換 得到一個自我相似解,並說明這個解將會在有限時間內爆破。最後將 討論這個爆破解的外觀。Abstract: In this pape...
International audienceIn this paper, we consider a class of the focusing inhomogeneous nonlinear Sch...
International audienceWe consider a nonlinear Schrödinger equation with double power nonlinearity, w...
Ozsari, Turker/0000-0003-4240-5252WOS: 000446348800027The finite time blow-up of solutions for 1-D N...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation \[ u_t = i \Delta u + | u |^\...
International audienceWe consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$...
International audienceWe consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$...
We consider the nonlinear Schr\"odinger equation on ${\mathbb R}^N $, $N\ge 1$, \begin{equation*} \p...
We consider the critical nonlinear Schr¿odinger equation iut = -.u-|u| 4 N u with initial condition ...
We consider the critical nonlinear Schrödinger equation iut = −∆u − |u | 4N u with initial condition...
AbstractIn this article we investigate the possibility of finite time blow-up in H1(R2) for solution...
We consider the following nonlinear Schr\"{o}dinger equation with double power nonlinearities and an...
International audienceWe consider the energy supercritical defocusing nonlinear Schrödinger equation...
摘要 本文我們探討一個非線性薛丁格方程式組。透過Madelung 轉換 得到一個自我相似解,並說明這個解將會在有限時間內爆破。最後將 討論這個爆破解的外觀。Abstract: In this pape...
International audienceIn this paper, we consider a class of the focusing inhomogeneous nonlinear Sch...
International audienceWe consider a nonlinear Schrödinger equation with double power nonlinearity, w...
Ozsari, Turker/0000-0003-4240-5252WOS: 000446348800027The finite time blow-up of solutions for 1-D N...